国产一区二区精品在线_午夜精品视频_亚洲国产高清高潮精品美女_久久久91_午夜精品视频_久久久久亚洲一区二区三区

結合IC設計和通用MCU實現同步Boost移動電源

來源:網絡

點擊:1606

A+ A-

所屬頻道:新聞中心

關鍵詞: IC設計,MCU

      1.引言

      隨著iphone、ipad帶動的全球智能手機、平板的風靡一時,人手一部智能手機已經不再是遙遠的夢想,手機與平板是人們外出的必備物品,除了兼具通信、拍照、電腦功能之外,這些數碼設備同是也是一種時尚體現,對輕巧纖薄的完美外形之極致追求與電池的續航能力成為一對矛盾。為了追求完美,iphone、ipad更是設計出一體化用戶不可拆卸機身,電池無法拆卸,于是移動電源成為了數碼后備電源的必須品,其市場需求隨著智能設備的發展迅速擴大。

      2.方案分析

      2.1 技術規格與方案比較

      當前適用于手機平板的主流移動電源的規格為:

      (1)具有鋰電池充放電管理功能;

      (2)5V/500mA/1A/2A輸出。

      其中,鋰電池充放電管理由“保護IC+ASIC或MCU” 實現,5V/500mA/1A/2A輸出由鋰電池Boost升壓加反饋控制實現。在移動電壓的方案中,最關鍵的指標和技術難點是Boost升壓輸出的效率,因為鋰電池充電電源一般來自220V市電充電器,不需要特別強調效率,而Boost升壓是將電池的電能輸出給手機、平板,充電效率特別重要。以 10000mA時的移動電源為例,90%的效率與70%效率的Boost充電電路,輸出電能相差2000mAh,從用戶體驗來看,效率低的移動電源發熱嚴重,安全隱患也較大。Boost電路主要有兩種,一種為二極管續流Boost,電路相對簡單,一種為同步Boost,電路相對復雜,對控制時序的精度要求高,過去幾年由于需求旺盛,為了快速出貨,大量方案均采用二極管續流的Boost方案,價格戰非常劇烈,因此,高端廠家開始轉移到同步Boost方案。

      2.2 專用MCU的同步Boost方案

      移動電源專用MCU HT45F4M的方案是當前市場廣泛采用的同步Boost方案,具有電路簡潔,效率高的特點,原廠提供的技術指標為:靜態耗電小于10uA,實測放電轉換效率最高超過91%(5V/700mA輸出時)。鋰電池保護機制:過流過壓過溫保護。其同步Boost的原理圖與二極管續流Boost對比如圖1所示。

    結合IC設計和通用MCU實現同步Boost移動電源

      圖1 HT45F4M同步Boost與通用MCU二極管續流Boost對比

      由圖1所致可見,HT45F4M與通用MCU相比,主要特點是內置互補式的PWM輸出功能,通過OUTL、OUTH的PWM互補時序,分別控制NMOS、 PMOS的通斷,從而實現同步Boost。我們實測過該方案的成品,效率與廠家提供的指標基本一致,與二極管Boost方案相比,1A以上大電流工作時,其功率器件發熱量低,效果差別明顯,性能良好。

      3.互補式PWM的IC設計實例

      現由于HT45F4M與通用MCU的主要差異是互補式的PWM輸出,如果設計一顆實現互補式PWM輸出的ASIC,適當選擇具有PWM輸出功能的通用MCU搭配,也可以實現類似HT45F4M的功能。這種IC設計+通用MCU的方案可以廣泛利用現有的大量MCU資源,更具靈活性,成本也有競爭力。

      3.1 結構框圖與時序圖

      互補式的PWM的結構框圖與時序圖如圖2所示,由通用MCU產生PWM輸出,輸入ASIC,經延時時間插入電路,產生互補式的PWM輸出,此PWM輸出為 PWMp,PWMn兩路,PWMp控制P-MOS,PWMn控制N-MOS。這兩個MOS管在充電時,用于控制充電電流;在放電時可用于控制放電電壓。充電時,PMOS導通的時間越長,充電功率越大。放電時,NMOS導通的時間越長,放電功率越大。

    結合IC設計和通用MCU實現同步Boost移動電源

     

      圖2 互補式的PWM的結構框圖與時序圖

      3.2 ASIC的設計與仿真分析

      我們使用Candence IDE設計仿真了一顆ASIC,實現圖2所示的互補輸出,由MCU提供PWM信號,通過延時和組合邏輯實現圖2所示的PWM互補輸出時序。圖3所示為 PWM與PWMn時序的仿真結果,圖中電壓峰值低者為來自MCU的PWM信號,電壓峰值高者為PWMn信號,PWMn下降沿與PWM的上升沿幾乎重疊,PWMn上升沿滯后于PWM的下升沿。時序上與圖2所示一致。

    結合IC設計和通用MCU實現同步Boost移動電源

     

      圖3 PWM與PWMn信號的仿真時序

      圖4所示為PWMn與PWMp時序的仿真結果,也是設計互補PWM輸出最終需要的結果。PWMp的低電平信號被“包圍在”PWMn的低電平信號中,也實現了圖2所示的時序關系。這意味著“PMOS僅在NMOS關斷期間開通”,因為在同步Boost的電路結構中,PMOS是低電平開通,NMOS是低電平關斷。

    結合IC設計和通用MCU實現同步Boost移動電源

     

      圖4 PWMn與PWMp的仿真時序

      圖4所示的波形同時表明,ASIC的設計實現了當NMOS關斷的時候,PMOS滯后DT1時間開通,當PMOS關斷DT2時間后,NMOS開通,這意味著 “NMOS僅在PMOS關斷期間開通”。可見,PMOS與NMOS都在對方關斷后導通,兩個管不會同時導通。當NMOS導通時,電能轉化為電感線圈的磁場能,當NMOS關斷后,磁場能轉化為電能,與電池電壓疊加,通過PMOS管輸出,于是,電路實現了同步Boost升壓功能。

      3.3 開關損耗

      當 NMOS關斷后,在PMOS管還未導通的DT1時間內,Boost電壓通過其PMOS管的體二極管輸出,因體二極管的壓降較大,這會帶來功率損耗,但由于 MOS管開關時間在幾十納秒以內,因此在整個導通周期內損耗不大。恰當設計ASIC的延時時間,通過ASIC的Option Pin腳使延時時間長度可變,并選擇合適的MOS管,即可使DT時間略大于PMOS管的開關時間,保證兩個MOS管不會同時導通,并減少開關損耗。

      與肖特基二極管相比,由于PMOS的導通電阻低,管壓降小,從而提高了效率,理論上肖特基的壓降約為0.3V,在5V/1A輸出時,肖特基上浪費的功率約為 0.3V*1A=0.3w,約為輸出功率的6%,這樣,若不計MOS管的導通電阻與開關損耗,理論上同步Boost效率比二極管續流高約6%,常用的低壓功率NOS管如8205A或P2804NVG在1A電流時導通電阻只有幾十毫歐,開關時間只有幾十納秒,所以實測結果顯示同步Boost方案的效率提高明顯,功率器件發熱較低,與理論分析相符。

      3.4 競爭力與成本

      除了肖特基外,電感,導線,電路板走線都會發熱,因此輸出電流500mA以上時,二極管Boost的移動電源很難做到90%以上的效率,而同步Boost較容易達到,對于大容量移動電源而言,兩種方案因效率產生的電池成本差別非常大,并且同步Boost移動電源本身因發熱而產生的溫度上升幅度很小,因此,容量越高、電流越大的移動電源,在技術指標、成本和用戶體驗三個方面,非同步Boost方案越缺乏競爭力。由于不同MOS管的開關導通時間不同,ASIC的延時時間可以通過增加或減少延時門的數量來調節。經測算,在0.5um工藝下,不計Pad時,Layout的面積小于0.4mm^2,成本很低。

      4. MCU選型及軟件流程說明

      使用通用MCU的PWM驅動Boost升壓,實現移動電源方案,在MCU選型時,其PWM的輸出頻率最好在100KHz以上,否則需要很大的電感和濾波電容,MCU應當有8bit以上的AD能力。我們分析過HOLTEK、海爾、義隆、Sonix、芯睿等消費電子常用的MCU資料,均有可以達到這一要求的通用MCU型號。

      移動電源軟件流程主要包含三部分:主循環,充電管理,放電管理等。我們分別使用過臺灣Holtek的HT46R066、海爾的HR6P71、芯睿的MK7A22P三種MCU,實現了由MCU的PWM驅動的移動電源方案,以下流程經實際驗證是可行的。

      4.1 主循環

      外部電源接入時,進行充電管理;外部負載接入時,進行放電管理。按鍵按下時進行LED電量顯示,按鍵長按時打開手電筒功能。在整個充放電過程中進行溫度檢測保護,在整個充電過程中保持LED輸出。放電時若超過10秒無按鍵,則進入到低功耗模式,關閉LED。

      4.2 充電管理

      充電管理主要功能為:當電池電壓小于3V時,進行涓流(1/10C)充電;當電池電壓在3V-4.2V時進行恒流充電。當電池電壓大于4.2V時,進行恒壓充電直至充電電流小于1/10C,此刻認為電池充滿,用于電量顯示的LED全亮。

      4.3 放電管理

      放電管理主要流程為,產生PWM信號驅動Boost升壓,由MCU的AD Pin檢測輸出電壓,當輸出電壓低于5V或高于時,改變PWM的占空比,控制Boost升壓的幅度,實現恒壓。通過串聯在輸出電路上的電阻,檢測電阻壓降的AD值,改變PWM占空比,實現恒流輸出和限流保護。如果MCU的AD位數小于10位,也可采用軟件算法限流,實際測試可用,但控制電流的精度較低。

      5.結語

      相對二極管續流的非同步Boost方案,同步Boost的移動電源具有效率高的突出優點,理論及實測都充分證明這一優點,因此它將會成為消費電子市場中移動電源的主流方案。本文提出了一種IC設計結合通用MCU實現的同步Boost方案,并進行IC設計仿真,達到預期結果。與專用IC相比,可充分利有現有 MCU資源,方案選擇靈活、成本也具有競爭力,相信這種形式的方案將在市場占有其一席之地。

    (審核編輯: 小王子)

    聲明:除特別說明之外,新聞內容及圖片均來自網絡及各大主流媒體。版權歸原作者所有。如認為內容侵權,請聯系我們刪除。

    国产一区二区精品在线_午夜精品视频_亚洲国产高清高潮精品美女_久久久91_午夜精品视频_久久久久亚洲一区二区三区
    <cite id="gqusq"><tbody id="gqusq"></tbody></cite>
    <strike id="gqusq"><tbody id="gqusq"></tbody></strike>
    <abbr id="gqusq"><rt id="gqusq"></rt></abbr>
  • <strike id="gqusq"><tbody id="gqusq"></tbody></strike>
    <ul id="gqusq"></ul>
    <center id="gqusq"><noscript id="gqusq"></noscript></center>
  • 亚洲欧洲一区二区| 亚洲先锋成人| 一本色道久久| 成人在线看片| 99成人在线| 亚洲v国产v在线观看| 亚洲毛片在线| 午夜精品一区二区三区在线观看 | 亚洲黄色成人久久久| 精品无人乱码一区二区三区的优势| 欧美亚洲精品日韩| 国产精品一 二 三| 国产一区二区三区的电影| 一区二区精品免费视频| 超碰97在线播放| 亚洲国产三级| 欧美黄色aaaa| 日本一区二区三区www| 精品欧美一区二区在线观看视频| 日韩亚洲精品在线| 一区在线电影| 欧美日本中文| 亚洲特级毛片| 欧美日韩ab| 欧美日本精品| 午夜精品视频| 一区二区日本| 欧美成人亚洲| 一级日韩一区在线观看| 欧美不卡福利| 欧美尤物一区| 午夜精品偷拍| 欧美日本精品| 亚洲精品资源| 亚洲精品一品区二品区三品区| 婷婷久久伊人| 欧美视频二区| 国产精品二区三区四区| 黄色免费成人| 国模吧视频一区| 欧美日韩综合| 永久久久久久| 日本一区不卡| 亚洲成人a**址| 青青成人在线| 欧美日韩精品一区| 伊人久久综合| 91av免费看| 国产伦精品一区二区| 久久久久久亚洲精品不卡4k岛国| 久久久久久艹| 国产精品v欧美精品v日韩 | 亚洲国内在线| 亚洲精品乱码| 国产三区精品| 快播亚洲色图| 欧美特黄一区| 亚洲二区视频| 精品久久久久久一区| 久久久久久国产精品一区| 一区二区三区av在线| 欧美freesex交免费视频| 好看的亚洲午夜视频在线| 5g国产欧美日韩视频| 精品国产福利| 欧美喷水视频| 久久国产精品一区二区三区四区| 欧美国产综合视频| 欧美一区二区| 久久午夜影视| 欧美日韩精品免费在线观看视频| 欧美精品二区三区四区免费看视频| 中文字幕在线亚洲三区| 一本色道久久综合亚洲精品婷婷| 精品午夜一区二区| 在线丝袜欧美日韩制服| 免费在线成人av| 欧美一区二区视频在线| 国产精品制服诱惑| 国产精品一区二区三区在线观| 欧美日本不卡| av一区二区三区免费| 影音先锋欧美在线| 久久综合一区| 性欧美精品一区二区三区在线播放| 亚洲欧美日韩专区| 日韩精彩视频| 国产精品日韩一区二区三区| 亚洲精品日韩精品| 亚洲色图自拍| 欧美福利精品| 高清不卡一区二区三区| 欧美精品一区二区三区久久久竹菊| 97人摸人人澡人人人超一碰| 亚洲免费不卡| 午夜精品一区二区在线观看| 久久九九视频| 99国产精品99久久久久久粉嫩| 国产伦精品一区二区三区视频孕妇 | 国产精品久久久久久久天堂第1集 国产精品久久久久久久免费大片 国产精品久久久久久久久婷婷 | 在线观看福利一区| 久久久精品午夜少妇| 亚洲狠狠婷婷综合久久久| 精品网站在线看| 国产视频精品网| 亚洲国产精品一区二区第四页av| 精品国产乱码久久久久久88av| 国产精品手机在线| 亚洲午夜激情| 日韩jizzz| 国产精品区一区| 另类图片国产| 亚洲毛片在线| 亚洲狠狠婷婷| 国产精品国产三级国产专区53| 91久久久一线二线三线品牌| 99国产精品私拍| 中文字幕一区二区三区四区五区 | 欧美日韩亚洲三区| 亚洲激情一区二区三区| 国产精品福利视频| 国产伦精品一区二区三区视频孕妇 | 天堂一区二区三区| 精品国产一区二区三区免费| wwwxx欧美| 米奇777在线欧美播放| 久久久久久一区| 亚洲理伦在线| 1024成人| 一本一生久久a久久精品综合蜜 | 成人在线看片| 亚洲午夜精品一区二区| 色噜噜狠狠一区二区三区| 91成人免费看| 久久久福利视频| 国产欧美韩日| 性欧美精品一区二区三区在线播放 | 日韩精品久久一区| av一区二区三区四区电影| 99亚洲一区二区| 欧美视频观看一区| 97视频资源在线观看| 狠狠色伊人亚洲综合网站色| 亚洲视频免费| 在线观看欧美亚洲| 国产私拍一区| 亚洲综合国产| 国产在线播放一区二区| 久久av一区二区三区亚洲| 奇米视频888战线精品播放| 鲁鲁狠狠狠7777一区二区| 亚洲精品中文字幕乱码三区不卡| 午夜精品福利一区二区| 久久精品91| 久久精品欧美| 亚洲国产日韩欧美| 亚洲看片一区| 久久深夜福利| 日韩中文一区二区三区| 一区精品视频| 免费在线播放第一区高清av| 老司机午夜免费精品视频 | 欧美三区视频| 1024成人| 久久视频在线观看中文字幕| 色中色综合成人| 99热免费精品| 国产精品久久7| 这里只有精品66| 国产视频一区三区| 日韩精品欧美专区| 欧美日韩一卡| 国产精品乱码一区二区三区| 日韩精品久久一区| 香蕉亚洲视频| 久久精品国产精品国产精品污| 欧美成熟视频| 91精品国产一区二区三区动漫| 天堂√在线观看一区二区| 红桃视频欧美| 蜜桃精品久久久久久久免费影院 | 国内自拍一区| 精品婷婷色一区二区三区蜜桃| 视频一区视频二区视频三区视频四区国产| 亚洲国产99| 国内视频一区二区| 亚洲电影av| 国产在线一区二区三区四区| 亚洲国产高清一区| 国产精品一区二区三区免费| 亚洲成人在线| 欧洲精品一区色| 99在线国产| 一区二区av| 另类欧美小说| 亚洲国产免费| 欧美日韩喷水| 欧美性bbwbbwbbwhd| 99热国产免费| 亚洲欧洲日夜超级视频|